InGaP HBT Gain Block

Product Features

- DC 6000 MHz
- +7.5 dBm P1dB at 900 MHz
- +19.5 dBm OIP3 at 900 MHz
- 15 dB Gain at 900 MHz
- Single Voltage Supply
- Green SOT-86 SMT Package
- Internally matched to 50 Ω

Applications

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless

Device Current

Product Description

The AG202-86 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG202-86 typically provides 15 dB gain, +19.5 dBm OIP3, and +7.5 dBm P1dB. The device combines dependable performance with consistent quality to maintain MTTF values exceeding 100 years at mounting temperatures of +85 °C & is housed in a SOT-8 (micro-X) industry-standard SMT lead-free/green/I compliant package.

The AG202-86 consists of Darlington pair amplific using the high reliability InGaP/GaAs HBT process and only requires DC-blocking capacitors, a and an inductive RF choke for operation.

The broadband MMIC amplifier can be various current and next generation wh such as GPRS, GSM, CDMA, and CDMA the AG202-86 will work for other within the DC to 6 GHz freq and fixed wireless.

Functi@

~~	
Function	Pin No.
Inpus	1
O o /t/Bias	3
ound	2. 4

1900

13.9

-20

-16

+6.5

+19.2

3.8

2140

13.5

-16

-12

+6.2

+18.9

3.8

Specifications (1)

TXX	Perormance	(1)

) .					
Parameter	Units	Min	Ty	(0/3)	Ţ	me	Units		Тур	1
Operational Bandwidth	MHz	DC	\geq	2000		requency	MHz	500	900	
Test Frequency	MHz		Sad	<i>y</i> <	7//	321	dB	15.0	14.7	
Gain	dB		(0)	}	1	S1100	dB	-25	-25	
Input Return Loss	dB	((0)	3	\$	dB	-16	-16	
Output Return Loss	dB		YU Jo		<i>)</i>	owput P1dB	dBm	+7.7	+7.6	
Output IP3 (2)	dBm	20	+ 19.6 ¿			output IP3	dBm	+19.9	+19.6	
Output IP2	dBm	(0)	+27(0	>> '		Noise Figure	dB	3.5	3.5	
Output P1dB	dBm کے		+78		2					
Noise Figure	dB/		3		≥ ~					
Test Frequency	M) _ (7850		•					
Gain	\mathcal{O}	12.9	3.9	7 4.9						
Output IP3 (2)	dPm	0	+19	\						
Output P1dB	$\sum m_{\lambda}$		102		_					
Device Voltage	6) v	(0)	20							

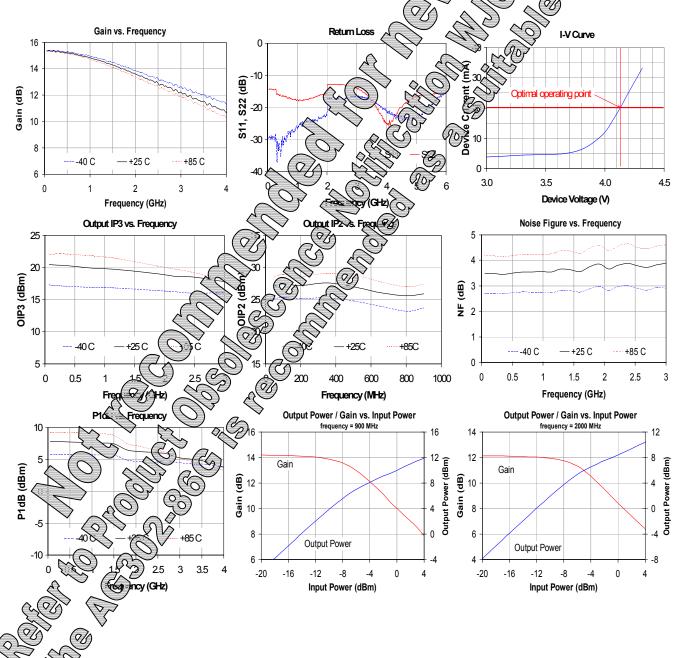
Test conditions: 25° 2. 3OIP measured with arated by 10 MHz. The

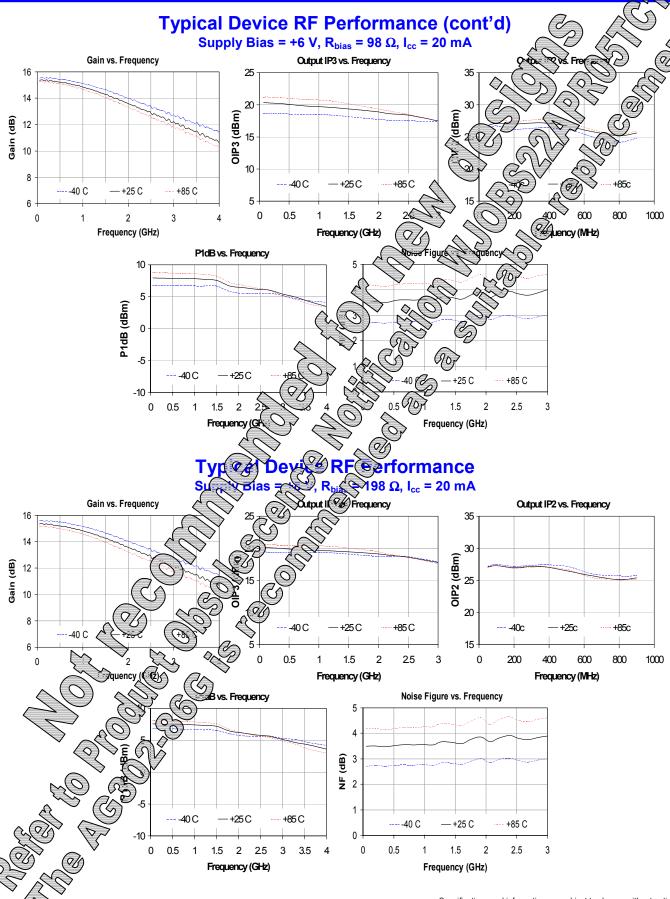
Parame	Rating	
Operatin Case Tel of ture	-40 to +85 °C	
Storag	-55 to +125 °C	
DC de	+4.5 V	
R Power (continuous)	+10 dBm	
on Ten Vature	+250° C	

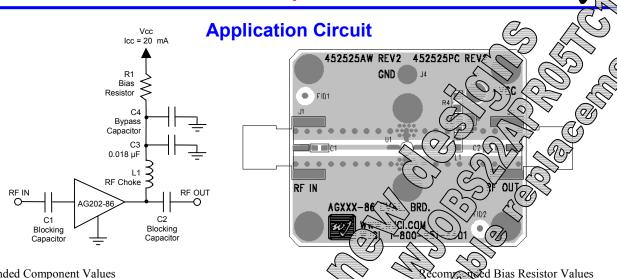
Ordering Information

Part No.	Description
AG202-86	InGaP HBT Gain Block (lead-tin SOT-86 Pkg)
AG202-86G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-86 Pkg)

above any of these parameters may cause permanent damage.


Typical Device RF Performance Supply Bias = +5 V, R_{bias} = 47.5 Ω , I_{cc} = 20 mA


Frequency	MHz	100	500	900	1900	2140	2400	35
S21	dB	15.0	15.0	14.7	13.9	13.5	13.3	
S11	dB	-25	-25	-25	-20	-16	-16	7
S22	dB	-14	-16	-16	-16	-12	-12	SZ
Output P1dB	dBm	+7.8	+7.7	+7.6	+6.5	+6.2	C.6/ C	(1) +4.7
Output IP3	dBm	+20.2	+19.9	+19.6	+19.2	+18.9	(10)	
Noise Figure	dB	3.5	3.5	3.5	3.8	3.8	3	C C
								$\sqrt{\sum}$


1. Test conditions: T = 25° C, Supply Voltage = +5 V, Device Voltage = 4.05 V, Rbias = 47.5 Ω , I = 20 mA typical, 50 Ω System.

2. 3OIP measured with two tones at an output power of -10 dBm/tone separated by 10 MHz. The suppression on the largest IM3 p

3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by extern

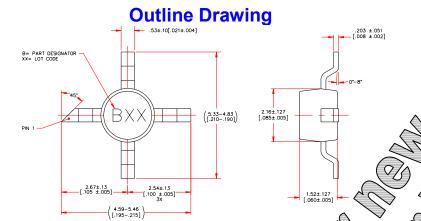
Recommended Component Values

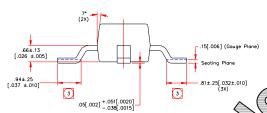
Reference	Frequency (MHz)						× ,
Designator	50	500	900	1900	2200	200	3504
L1	820 nH	220 nH	68 nH	27 nH	22 / H(C mY	18/10
C1, C2, C4	.018 μF	1000 pF	100 pF	68 pF	68	рF	EDD
4 0001	0 1				~~		$\overline{}$

The proper values for the components are dependent upon the intended frequency of open.
 The following values are contained on the evaluation board to achieve optimal adhand performance.

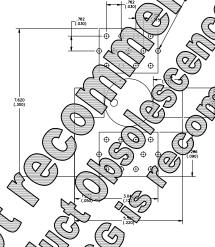
Ref. Desig.	Value / Type	(-(20)
L1	39 nH wirewound inductor	
C1, C2	56 pF chip capacitor	26)3
C3	0.018 μF chip capacitor	603
C4	Do Not Place	
R1	47.5 Ω 1% tolerang	0603

R1 value Size 0603 47.5 ohms 6 V 98 ohms 0603 7 V 148 ohms 0805 8 V 198 ohms 0805 9 V 248 ohms 1206 10 V 298 ohms 1210 12 V 1210 398 ohms


The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +5 V. A 1% tolerance resistor is recommended.


_	3-Farameters (V	device - 14.03	v, icc 7	1 - 23 V	raicu ya icc	leaus)			
	Freq (MHz)	S11 (dB)	Stante	S2	SZ ng)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
	50	-29.48	CA).	(2)	85	-19.12	1.51	-14.31	-3.56
	250	-30.29	(28)		0.11	-19.61	0.95	-14.53	-8.85
	500	-31.03 €	82.51	(C) .27	160.10	-19.66	-3.57	-16.48	-19.17
	750	-27.59	86.84	7) 15.16	150.47	-19.68	-6.17	-17.15	-32.28
	1000	-26.46	74.45	15.00	141.16	-19.90	-10.13	-17.58	-45.39
	1250	-1 060	664(0)	123	131.45	-19.39	-8.85	-17.61	-60.92
	1500		5		122.26	-19.43	-11.48	-17.06	-74.62
	1750	(\strace{1}{2}\sqrt{1}	Car	7.36	113.06	-19.47	-12.13	-16.31	-85.09
	2000	42 (1 2713	14.07	104.15	-19.35	-15.69	-15.46	-92.30
	2250	17.21	1.02	13.71	96.18	-19.25	-17.05	-12.73	-90.69
	2	-17.3	-12.4	13.48	89.93	-19.39	-22.66	-12.93	-95.70
	2750	-16.	<i>→</i> 4.72	13.25	81.58	-18.81	-24.09	-13.24	-99.49
,	(000)	-16	(32)0	13.01	73.71	-18.87	-23.14	-13.91	-103.44
<		2893	C \$7.13	12.78	66.09	-18.60	-24.00	-15.45	-107.37
	20	(0) A6	38.73	12.55	58.42	-18.47	-28.95	-17.85	-114.47
	3750	0 19.36	-38.12	12.30	50.78	-18.33	-31.75	-21.54	-131.28
	400	-21/21	-32.13	12.04	42.86	-18.04	-33.50	-25.15	-166.78
	4250	22311	-22.58	11.82	35.34	-17.74	-37.34	-22.92	141.70
	4500	(5)	-14.16	11.49	27.87	-17.63	-40.46	-20.10	126.02
	(B)	3.62	-18.03	11.21	19.99	-17.45	-42.62	-17.92	123.31
		23.18	-30.26	10.97	12.68	-17.43	-47.82	-16.53	126.61
4	5250	27-21.41	-56.84	10.69	5.73	-17.35	-50.98	-16.25	134.85
56	>>550	-19.16	-76.72	10.40	-0.95	-17.11	-54.42	-15.87	146.12
E. S.	5750	-16.72	-91.91	10.19	-7.71	-16.87	-57.56	-15.49	159.00
$\langle \langle \langle \rangle \rangle$, ,,	-15.23	-100.12	9.94	-14.32	-16.72	-60.23	-15.19	170.24
(0) -	—(<i>93</i>)—								

Device S-parameters are available for download off of the website at: http://www.wj.com


AG202-86 (Sot-86 Package) Mechanical Informatio

This package may contain lead-bearing materials. The plating material on the leads is S

Therm Spec Stick

Operating Case Statur 40 to +85 °C
Thermal Resistan Rth 440 °C/W
Junction Temperature, 75 121 °C

1. The thermal restant referenced from the hottest part of the justion to the delad (pin 2 or 4).

2. This compound se typical biasing condition of +4. On MA (an 85 °C case temperature. A normal matter of 1 million hours is achieved for on temperatures below 177 °C.

P (0) ct o bing

The marked a "B' a "B' a "B' a "B' a "B' a marked of a "B' a "B' a marked of a "B' a "B' a marked of a "B' a "B' a "B' a marked of a "B' a

De an vel Cifica for this part are websithe "Application Note on the Company of t

MS ESD Rating

ution! ESD sensitive device.

Exiting: Class 0 Passes at 150 V

Human Body Model (HBM)
andard: JEDEC Standard JESD22-A114

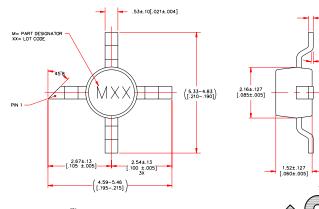
ESD Rating: Class II Value: Passes at 250 V

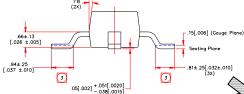
Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 1

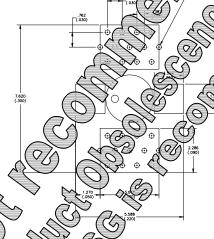
Standard: JEDEC Standard J-STD-020

Mounting Config. Notes


- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010")
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.



AG202-86G (Green / Lead-free Sot-86 Package) Mechanical


This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflection of a compatib

Outline Drawing

Land Pat

The Spec vation

Operating Case Operatur

Thermal Resistance, Rth

Junction Ten

-40 to +85 °C 440 °C/W 121 °C

1. The there all resistant for ferenced from the hottest part of the n to round lead (pin 2 or 4).

2. The sponds one typical biasing condition of 20 mA at an 85 °C case temperature. A full May of 1 million hours is achieved for the sponds of 1 million hours is achieved for the sponds of 177 °C.

mark (Jith a "M" ya to git numeric code or of to surface the package.

rape pecification for this part are local in the "Application No. 100.

MO ESD Rating

caution! ESD sensitive device.

Rating: Class 1C

Passes at 1000 V min.
Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV

Value: Passes at 1000 V min.
Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 3 at +260° C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010")
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
 Mounting screws can be added near the part to fasten the
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.